On Superlinear Convergence of Infeasible Interior-Point Algorithms for Linearly Constrained Convex Programs
نویسندگان
چکیده
This note derives bounds on the length of the primal-dual affine scaling directions associated with a linearly constrained convex program satisfying the following conditions: 1) the problem has a solution satisfying strict complementarity, 2) the Hessian of the objective function satisfies a certain invariance property. We illustrate the usefulness of these bounds by establishing the superlinear convergence of the algorithm presented in Wright and Ralph [22] for solving the optimality conditions associated with a linearly constrained convex program satisfying the above conditions.
منابع مشابه
Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs
An example of SDPs (semide nite programs) exhibits a substantial di culty in proving the superlinear convergence of a direct extension of the Mizuno-Todd-Ye type predictorcorrector primal-dual interior-point method for LPs (linear programs) to SDPs, and suggests that we need to force the generated sequence to converge to a solution tangentially to the central path (or trajectory). A Mizuno-Todd...
متن کاملA Superlinear Infeasible-Interior-Point Affine Scaling Algorithm for LCP
We present an infeasible-interior-point algorithm for monotone linear complementarity problems in which the search directions are affine scaling directions and the step lengths are obtained from simple formulae that ensure both global and superlinear convergence. By choosing the value of a parameter in appropriate ways, polynomial complexity and convergence with Q-order up to (but not including...
متن کاملA Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems
We consider sequential quadratic programming (SQP) methods applied to optimization problems with nonlinear equality constraints and simple bounds. In particular, we propose and analyze a truncated SQP algorithm in which subproblems are solved approximately by an infeasible predictor-corrector interior-point method, followed by setting to zero some variables and some multipliers so that compleme...
متن کاملA Primal-Infeasible Interior Point Algorithm For Linearly Constrained Convex Programming
In the paper a primal-infeasible interior point algorithm is proposed for linearly constrained convex programming. The starting point is any positive primal-infeasible dual-feasible point in a large region. The method maintains positivity of the iterates which point satisfies primalinfeasible dual-feasible point. At each iterates it requires to solve approximately a nonlinear system. It is show...
متن کاملOn a General Class of Interior-point Algorithms for Semideenite Programming with Polynomial Complexity and Superlinear Convergence
We propose a uniied analysis for a class of infeasible-start predictor-corrector algorithms for semideenite programming problems, using the Monteiro-Zhang uniied direction. The algorithms are direct generalizations of the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming. We show that the algorithms belonging to this class are globally convergent, provided the problem has a so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 8 شماره
صفحات -
تاریخ انتشار 1997